thefederalregister.com

Daily Rules, Proposed Rules, and Notices of the Federal Government

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

[Docket No. 100322160-2479-02]

RIN 0648-XV10

Endangered and Threatened Wildlife and Plants: Notice of 12-Month Finding on a Petition To List the Bumphead Parrotfish as Threatened or Endangered Under the Endangered Species Act (ESA)

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.
ACTION: Notice of twelve-month finding listing determination and availability of status review documents.
SUMMARY: We, NMFS, announce a twelve-month finding and listing determination on a petition to list the bumphead parrotfish (Bolbometopon muricatum) as threatened or endangered under the Endangered Species Act (ESA). We have completed a status review of the bumphead parrotfish in response to the petition submitted by WildEarth Guardians and considered the best scientific and commercial data available. The bumphead parrotfish is a coral reef-associated species that occurs in 45 countries in the Indo-Pacific area, including some U.S. Territories. After reviewing the best scientific and commercial data available, we have determined that the bumphead parrotfish is not warranted for listing under the ESA because the species still occupies its historical range, although at a lower and declining abundance, but with biological characteristics and management measures that support the population above the viability threshold. Based on these considerations, described in more detail in this notice, we conclude that the bumphead parrotfish is not currently in danger of extinction throughout all or a significant portion of its range, and notlikely to become so within the foreseeable future.
DATES: This finding was made on November 7, 2012.
ADDRESSES: The Bumphead parrotfish status review documents (Biological Review Team Report, Management Report) are available by submitting a request to the Regulatory Branch Chief, Protected Resources Division, NMFS Pacific Islands Regional Office, 1601 Kapiolani Blvd., Suite 1110, Honolulu, HI 96814, Attn: Bumphead Parrotfish 12-month Finding. The reports are also available electronically at:http://www.fpir.noaa.gov/PRD/prd_esa_section_4.html.
FOR FURTHER INFORMATION CONTACT: Lance Smith, NMFS Pacific Islands Regional Office, (808) 944-258; or Dwayne Meadows, NMFS, Office of Protected Resources (301) 427-8403.
SUPPLEMENTARY INFORMATION: Background

On January 4, 2010, we received a petition from WildEarth Guardians to list the bumphead parrotfish (Bolbometopon muricatum) as threatened or endangered under the Endangered Species Act of 1973. The petitioner also requested that critical habitat be designated for this species concurrent with listing under the ESA. The petition asserted that overfishing is a significant threat to bumphead parrotfish and that this species is declining across its range and is nearly eliminated from many areas. The petition also asserted that degradation of coral habitat through coral bleaching and ocean acidification threatens this species as coral is its primary food source. The petition also argued that biological traits (e.g., slow maturation and low reproductive rates), shrinking remnant populations and range reductions, effects from increasing human populations, and inadequate regulatory protection all further contribute to the risk of extinction for bumphead parrotfish. This species is listed as vulnerable by the International Union for the Conservation of Nature (IUCN; Chanet al.,2007).

On April 2, 2010, we published a 90-day finding with our determination that the petition presented substantial scientific and commercial information indicating that the petitioned action may be warranted (75 FR 16713). We initiated a comprehensive status review of bumphead parrotfish to determine if the species warrants listing under the ESA. The 90-day finding requested scientific and commercial information from the public to inform a status review of the species. We received ten public responses to the 90-day Finding; the information we received was considered in the comprehensive status review as described below in the Biological Review section. The status review of bumphead parrotfish was completed jointly by our Pacific Islands Fisheries Science Center (PIFSC) and Pacific Islands Regional Office (PIRO). A Bumphead Parrotfish Biological Review Team (BRT) comprising Federal scientists from the Hawaii Cooperative Fishery Research Unit of the United States Geological Survey, and our Southwest and Pacific Islands Fisheries Science Centers completed a biological report on the species (hereafter “BRT Report”, cited as Kobayashiet al.,2011). PIRO staff completed a report on the regulatory mechanisms and conservation efforts affecting the species across its range (hereafter “Management Report”, cited as NMFS, 2012). The BRT Report and Management Report together constitute the bumphead parrotfish status review. Both reports are available as described above [seeADDRESSES].

Listing Determinations Under the ESA

We are responsible for determining whether the bumphead parrotfish is threatened or endangered under the ESA (16 U.S.C. 1531et seq.). Section 4(b)(1)(A) of the ESA requires us to make listing determinations based solely on the best scientific and commercial data available after conducting a review of the status of the species and after taking into account efforts being made by any state or foreign nation to protect the species. We have followed a four-step approach in making this listing determination for bumphead parrotfish: (1) Biological Review; (2) Threats Evaluation; (3) Extinction Risk Analysis; and (4) Listing Determination.

For the first step, the BRT completed a biological review of the taxonomy, distribution, abundance, life history and biology of the species (Kobayashiet al.,2011). The BRT Report determined if the bumphead parrotfish is a “species” under the ESA. To be considered for listing under the ESA, a group of organisms must constitute a “species,” which is defined in section 3 of the ESA to include taxonomic species plus “any subspecies of fish or wildlife or plants, and any distinct population segment [DPS] of any species of vertebrate fish or wildlife which interbreeds when mature.” The BRT Report's results are summarized below under Biological Review.

For the second step, we assessed threats affecting the species' status. We did this by following guidance in the ESA that requires us to determine whether any species is endangered or threatened due to any of the following five factors: (A) The present or threatened destruction, modification, or curtailment of its habitat or range; (B) overutilization for commercial, recreational, scientific, or educational purposes; (C) disease or predation; (D) the inadequacy of existing regulatory mechanisms; or (E) other natural or manmade factors affecting its continued existence (sections 4(a)(1)(A) through (E)). The BRT Report examined factors A, B, C, and E (Kobayashiet al.,2011), and the Management Report examined factor D and conservation efforts as per section 4(b) (NMFS, 2012). Results of the BRT and Management Reports with regard to the five factors are summarized below under Threats Evaluation.

For the third step, we completed an extinction risk analysis to determine the status of the species. We asked the BRT to develop an extinction risk analysis approach based on the best available information for bumphead parrotfish. Extinction risk results in Kobayashiet al.(2011) are based on factors A, B, C, and E of section 4(a)(1) of the ESA. Factor D (“inadequacy of existing regulatory mechanisms”); Federal, state, and foreign conservation efforts were assessed in the Management Report (NMFS, 2012), and not considered by the BRT in its extinction risk analysis for the species. Thus, a final extinction risk analysis was done by determining whether results of the BRT's extinction risk analysis would be affected by conclusions made based on the contents of the Management Report, thereby addressing the five 4(a)(1) factors as well as conservation efforts that may mitigate the impacts of threats to the species' status. The Policy for Evaluation of Conservation Efforts When Making Listing Determinations, or PECE policy (68 FR 15100; March 28, 2003) provides direction for the consideration of protective efforts identified in conservation agreements, conservation plans, management plans, or similar documents (developed by Federal agencies, state and local governments, Tribal governments, businesses, organizations, and individuals) that have not yet been implemented, or have been implemented but have not yet demonstrated effectiveness. The evaluation of the certainty of an effort's effectiveness is made on the basis of whether the effort or plan: establishes specific conservation objectives; identifies the necessary steps to reduce threats or factors for decline; includes quantifiable performance measures forthe monitoring of compliance and effectiveness; incorporates the principles of adaptive management; and is likely to improve the species' viability at the time of the listing determination. In addition, recognition through Federal government or state listing promotes public awareness and conservation actions by Federal, state, tribal governments, foreign nations, private organizations, and individuals.

For the fourth step, results of the biological review, threats evaluation, and extinction risk analysis are considered to determine whether the bumphead parrotfish qualifies for threatened or endangered status. Section 3 of the ESA defines an endangered species as “any species which is in danger of extinction throughout all or a significant portion of its range” and a threatened species as one “which is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.” Thus, in the context of the ESA, the Services interpret an “endangered species” to be one that is presently at risk of extinction. A “threatened species,” on the other hand, is not currently at risk of extinction but is likely to become so. In other words, a key statutory difference between a threatened and endangered species is the timing of when a species may be in danger of extinction, either now (endangered) or within the foreseeable future (threatened). Thus, a species may be listed as threatened if it is likely to become in danger of extinction throughout all or a significant portion of its range within the foreseeable future.

Whether a species is ultimately protected as endangered or threatened depends on the specific life history and ecology of the species, the nature of threats, the species' response to those threats, and population numbers and trends. In determining whether the species meets the standard of endangered or threatened, we must consider each of the threats identified, both individually and cumulatively. For purposes of our analysis, the mere identification of factors that could impact a species negatively is not sufficient to compel a finding that ESA listing is appropriate. In considering those factors that might constitute threats, we look beyond mere exposure of the species to the factor to determine whether the species responds, either to a single threat or multiple threats in combination, in a way that causes actual impacts at the species level. In making this finding, we have considered and evaluated the best available scientific and commercial information, including information received in response to our 90-day finding.

Biological Review

This section provides a summary of the BRT Report (Kobayashiet al.,2011). The BRT first reviewed the ten public comments received on the 90-day Finding and found that six of them reiterated other materials available to the BRT. Two comments argued for the existence of bumphead parrotfish DPSs in American Samoa and Guam, but no supporting biological information was provided. A DPS is evaluated for listing under the three following elements: (1) Discreteness of the population segment in relation to the remainder of the species to which it belongs; (2) The significance of the population segment to the species to which it belongs; and (3) The population segment's conservation status in relation to the Act's standards for listing (i.e., is the population segment, when treated as if it were a species, endangered or threatened?) (61 FR 4722: February 7, 1996). The BRT found insufficient information to conclude that a DPS designation was warranted for bumphead parrotfish. These two comments did, however, provide information substantiating information already available to the BRT regarding the role of fishing in the decline of bumphead parrotfish around heavily populated and/or visited areas.

The two remaining comments contained information pertinent to existing regulatory mechanisms throughout bumphead parrotfish range. This information was provided to the staff compiling the management report. Following are summaries of key biological information presented in Kobayashiet al.(2011).

Species Description

The bumphead parrotfish is a member of a conspicuous group of shallow-water fishes (parrotfishes in the family Scaridae, order Perciformes) that are closely associated with coral reefs (Bellwood, 1994; Randallet al.,1997). Currently, 90 species in 10 genera are recognized in the parrotfish family (Bellwood, 1994; Parenti and Randall, 2000). Parrotfishes are distinguished from other fishes based on their unique dentition (dental plates derived from fusion of teeth), loss of predorsal bones, lack of a true stomach, and extended length of intestine (Randall, 2005).

The bumphead parrotfish is the largest member of the parrotfishes, growing to at least 110 cm total length (TL) (Kobayashiet al.,2011) and a maximum total length of 130 cm and weighing up to 46 kg (Donaldson and Dulvy, 2004; Randall, 2005). Adults are primarily olive to blue green or grey in color with the anterior region near the head being yellow to pink in coloration (Randall, 2005). A prominent bulbous bump on the forehead, from whence the genus name is derived, is also a common feature observed in adults. The bump is sexually dimorphic, it slopes caudal to beak in females but is nearly parallel with the beak in males, and the entire bump is usually larger in males (Munoz et al., 2012). Bumphead parrotfish have been observed to reach sexual maturity at 55-65 cm TL for females and 47-55 cm TL for males (Hamiltonet al.,2007). Consequently, juvenile bumphead parrotfish are defined as any fish less than about 50 cm TL. Juveniles are greenish brown in color with two to three vertical rows of white spots along the flank (Bellwood and Choat, 1989; Randall, 2005). Bumphead parrotfish are distinguished from other parrotfish species by possessing two to four median predorsal scales, three rows of cheek-scales, 16-17 pectoral-fin rays, 16-18 gill rakers, and 12 precaudal vertebrae (Kobayashiet al.,2011).

English common names include buffalo parrotfish, bumphead parrotfish, double-headed parrotfish, giant humphead parrotfish, green humphead parrotfish, and humphead parrotfish. Non-English common names in the Pacific include: Lendeke, Kitkita, Topa, Topa kakara, Perroquet bossu vert, Togoba, Uloto'i, Gala Uloto'i, Laea Uloto'i, Loro cototo verde, Berdebed, Kalia, Kemedukl, Kemeik, and Tanguisson. Several of these names are a reflection of the different size ranges of the fish used within a society (Adams and Dalzell, 1994; ASFIS, 2010; Aswani and Hamilton, 2004; Hamilton, 2004; Hamiltonet al.,2007; Helfman and Randall, 1973; Johannes, 1981).

Currently, there is no population genetic information on bumphead parrotfish. Regional variation in morphology, meristics, coloration, or behavior has not been observed. Based on modeling of pelagic egg and larvae transport, the species likely has an interconnected population structure throughout its current range, with the possible exception of both the eastern and western edges of the current range (Kobayashiet al.,2011). While this conclusion is based on a single estimate of larval duration, this estimate is the best available information and is well within the range of values reported for labrids and scarids (Ishihara and Tachihara, 2011). Several empirical studies did not find a relationship between pelagic larval duration and genetic population structure (Bayet al., 2006; Bowenet al.,2006; Luizet al.,2012) however they and others (Saenz-Agudeloet al.,2012; Tremlet al.,2012) all found evidence to some degree of relatively long range dispersal in species with a pelagic larval stage; as such, while pelagic larval duration is likely one of many factors that influence reef fish dispersal and connectivity, the existence of a pelagic larval life stage is likely to result in interconnected population structure to some degree. More recent work by Faurby and Barber (2012) asserts that pelagic larval duration may be a much stronger determinant of realized larval dispersal than suggested in empirical studies due to variation and uncertainty associated with calculating genetic structure. Without genetic information for bumphead parrotfish, it is impossible to confirm or deny this relationship. Additionally, Tremlet al.(2012) found that broad-scale connectivity is strongly influenced by reproductive output and the length of pelagic larval duration across three coral reef species.

One year of current data (2009) was chosen for use in the pelagic transport simulation; although some interannual variability exists in ocean currents, PIFSC data available at Oceanwatch (http://oceanwatch.pifsc.noaa.gov/equator_eof.html) indicate that 2009 transitioned between high and low sea surface height anomalies and was not likely to be anomalous in any respect for the whole year considered. Although the simulation did not necessarily account for inter-annual variability of current data outside of 2009, its reliance on the entire year's current data, rather than a time-limited snapshot, increases our confidence in its projections. Sponaugleet al.(2012) provide a demonstration of significant agreement between modeled and observed settlement of a coral reef fish. The BRT found, and we agree, that the bumphead parrotfish is a single, well-described species that cannot be sub-divided into DPSs based on the currently available biological information (Kobayashiet al.,2011). In addition to the criteria identifiedsupra,DPSs may be delimited by international governmental boundaries within which differences in control of exploitation, management of habitat, conservation status, or regulatory mechanisms exist that are significant in light of Section 4(a)(1)(D) of the ESA. Because this determination involves consideration of factors outside the technical and scientific expertise of the BRT, they were not charged with determining whether distinguishing DPSs based on international political boundaries is appropriate. This aspect of DPS designation is discussed further below in the Listing Determination.

Habitat and Distribution

Adult bumphead parrotfish are found primarily on shallow (1-15 m) barrier and fringing reefs during the day and rest in caves and shallow sandy lagoon habitats at night (Donaldson and Dulvy, 2004). Extensive reef structures on the Great Barrier Reef off the east coast of Australia with adjacent lagoons appear to provide an example of optimal habitat for bumphead parrotfish (Choat, personal communication). Lihou and Herald are two isolated islands in the Coral Sea approximately 1000 km from the Great Barrier Reef with little fishing pressure. Densities of bumphead parrotfish are over an order of magnitude higher on the Great Barrier Reef compared with these two island locations (see Figure 3 in Kobayashiet al.,2011adapted from Choat, unpublished data). Thus, differences in abundance between locations may be related, at least in part, to habitat and biogeographic preferences (Kobayashi et al., 2011). This highlights the importance of exposed outer reef fronts with high structural complexity along a continuous reef system with adjacent lagoons as preferred habitat. Likely limiting factors for bumphead parrotfish abundance are sheltered lagoons for recruitment, high energy forereef foraging habitat for adults, and nighttime shelter (caves) for sleeping (Kobayashiet al.,2011).

Based on limited information, juvenile bumphead parrotfish habitat is thought to consist mainly of mangrove swamps, seagrass beds, coral reef lagoons, and other benthic habitats that provide abundant cover (Kobayashiet al.,2011). Juvenile bumphead parrotfish in the Solomon Islands were restricted to the shallow inner lagoon while larger individuals of adult size classes (>60 cm TL) occurred predominately in passes and outer reef areas (Aswani and Hamilton, 2004; Hamilton, 2004). Densities of juveniles (< 50 mm Fork Length (FL)) were an order of magnitude higher in the inner lagoon around Cocos-Keeling in the Indian Ocean than in the central lagoon; lower numbers of juveniles occurred on the forereef. Size distributions of bumphead parrotfish at Cocos-Keeling show a dominance of small individuals in the inner lagoon with the mode at 18 mm FL. The mid-lagoon shows a bimodal distribution with a mode of 24 mm FL and another mode at 72 mm FL. The forereef size distribution consists of larger juveniles with a mode at 66 mm FL (Choat, unpublished data).

Bumphead parrotfish are found in 45 countries in the Indo-Pacific as well as disputed areas in the South China Sea. The BRT divided this range into 63 strata, which are primarily country specific, but include subsections or regions within countries in some cases. Certain geographic strata are in or near the overall range polygon, but are not known to have bumphead parrotfish (e.g., Hawaii, Johnston Atoll, Cook Islands, Tokelau, Nauru, British Indian Ocean Territory, etc.). Although data are limited, we found no evidence to conclude that historical range was significantly different from current range. We therefore conclude that the historical and current ranges are equivalent (Kobayashiet al.,2011). Surveys conducted in northern Tanzania and Bolinao, Philippines both reported no bumphead parrotfish observed, however they were conducted at only a few sites within each country and absence is likely based on limited survey data (see below). McClanahan et al. (1999) specifically note that in reef surveys in Tanzania, there was no evidence for species losses.

Abundance and Density

The bumphead parrotfish is thought to have been abundant throughout its range historically (Dulvy and Polunin, 2004). Numerous reports suggest that fisheries exploitation has reduced local densities to a small fraction of their historical values in populated or fished areas (Bellwoodet al.,2003; Dulvy and Polunin, 2004; Hamilton, 2004; Hoey and Bellwood, 2008). Estimates of abundance throughout the entire geographic range of bumphead parrotfish are unavailable. However, efforts have been made to document the abundance of reef fishes, including bumphead parrotfish, at specific locations (Jennings and Polunin, 1995; 1996; Dulvy and Polunin, 2004). Among the non-U.S. sites examined in these studies, Australia's Great Barrier Reef had the highest observed densities of bumphead parrotfish with an estimate of 3.05 fish per km2, followed by the Solomon Islands (1.40 fish per km2), and Fiji (0.03 fish per km2). Reef fish surveys from northern Tanzania and Bolinao in the Philippines did not record any bumphead parrotfish, although it should be noted that in comparison to other locations for which data are presented, these two studies represent the lowest amount of survey effort (2 survey transects each) and the highest levels of exploitation. Studies have also shown that larger individuals of reef fish species began fleeing at great distances in areas where human activity such as spearfishing occurs (e.g.,Kulbicki 1998; Bozecet al.2011), making them less detectable in visual surveys, whereas in remote and/or protected areas, the large individuals are relatively easily observed. Bozec et al.'s large fish size begin at 30cm, only half of the average size of bumpheads; however, their results indicate a general trend of the larger the fish, the greater the fleeing distance. Their results also indicate that size and shyness have combined effects on fishes' reaction to observers, with large fish tending to be more shy. Where surveys focused on species of commercial importance, the corresponding detection profiles exhibited a marked diver avoidance since commercial species are usually larger and more likely to be frightened by divers. Heavy subsistence, artisanal, and commercial fisheries were reported at all locations where bumphead parrotfish densities were less that 1 fish per km2. Interpretation of these results is complicated by several additional methodological concerns like limited depth range of surveys, comparability of results from different survey methods, comparability of results collected over a 13 year time span, and whether or not surveys conducted can be considered representative of the entire species range (Kobayashiet al.,2001). As such, while we have some information on bumphead parrotfish abundance from a few areas within the species range, the results should be interpreted and compared cautiously.

Densities of bumphead parrotfish in the Indian Ocean show a biogeographic density gradient with the highest densities adjacent to the western Australian coast, and densities decreasing to the west (Choat, unpublished data; see Figure 9 in Kobayashiet al.2011). Densities at Rowley Shoals off Western Australia are similar to high densities observed on the outer Great Barrier Reef, and highlight the importance of exposed outer reef habitats with adjacent lagoons and low population density and utilization. Densities of bumphead parrotfish in the western Indian Ocean (East Africa, Seychelles) are generally lower than those observed in Australia and the western Pacific, although some areas of the Seychelles such as Farquhar Atoll and Cousin Island (Jennings, 1998) are exceptions to the gradient described above and support large densities of bumphead parrotfish. Also, large numbers of bumphead parrotfish are found in some areas of Borneo and Malaysia (e.g., Sipadan; Kobayashiet al.,2011).

Surveys conducted by the Secretariat of the Pacific Community (SPC) in their Pacific Regional Oceanic and Coastal Fisheries project in 2001-2008 revealed relatively high numbers of bumphead parrotfish in Palau with slightly more than 1.5 individuals per station. Numbers in New Caledonia were approximately half of those observed in Palau. Sites in Papua New Guinea and the Federated States of Micronesia also recorded modest numbers of individuals. Low numbers in Tonga, Fiji, and the Solomon Islands may reflect fishing pressure (e.g., Dulvey and Polunin, 2004; Hamilton, 2004), while their absence from a number of locations is likely the result of the lack of suitable lagoon habitats for recruitment (i.e., Niue, Nauru) (Kobayashiet al.,2011). Based on SPC data, the maximum number of individuals per school was 120 individuals in Palau and 100 individuals in New Caledonia. Overall, the average number of individuals observed per school was 8.17 fish (Kobayashiet al.,2011).

In the U.S. Pacific Islands, abundance of bumphead parrotfish has been assessed since 2000 as part of PIFSC's Reef Assessment and Monitoring Program. Bumphead parrotfish were most abundant at Wake Atoll in the Pacific Remote Island Areas (PRIAs) (∼300 fish per km2), followed by Palmyra Atoll in the PRIAs (5.22 fish per km2), Pagan Island in the Commonwealth of the Northern Mariana Islands (1.62 fish per km2), Jarvis Island in the PRIAs (1.26 fish per km2), Ta`u Island in American Samoa (1.08 fish per km2), and Tutuila Island in American Samoa (0.41 fish per km2; Kobayashiet al.,2011).

In summary, the abundance of bumphead parrotfish varies widely. Sites where bumphead parrotfish are found in abundance (densities as high as 300 fish per km2) include portions of the Great Barrier Reef Marine Park (Bellwoodet al.,2003), sites in the Seychelles, Wake Atoll and Palmyra Atoll, U.S. Pacific Islands, Rowley Shoals Marine Park, isolated regions of Papua New Guinea, portions of the Red Sea, protected sites in Palau, and remote sites in the Solomon Islands (Kobayashiet al.,2011). Alternatively, they are relatively uncommon in parts of Fiji, Samoa, Guam, Mariana Islands, Tonga, and Solomon Islands, with many other areas at intermediate levels of abundance. Also, the BRT was unable to find abundance information in many parts of the species' range (Kobayashiet al.,2011).

Contemporary Global Population Abundance

The BRT Report warns that “There are inadequate data on bumphead parrotfish population dynamics, demography, and temporal/spatial variability to use even the most rudimentary of stock assessment models. The data simply do not exist to allow one to credibly estimate changes in population size, or even the magnitude of population size, structured over space and time in a proper framework of metapopulation dynamics and demographics” for bumphead parrotfish. The BRT used the best available information on population density from recent (1997-2009) survey data to develop contemporary global estimates of adult bumphead parrotfish abundance. Contemporary global population estimates are based on the geographic range of bumphead parrotfish, amount of suitable adult bumphead parrotfish habitat within its range, and the density of adult bumphead parrotfish within the habitat. Population density data were available for 49 of 63 of the strata from SPC and ReefCheck underwater visual surveys. They then used a bootstrap resampling simulation approach to estimate global population density by randomly assigning from the actual density estimates one estimate to each stratum in each simulation model iteration (Kobayashiet al.,2011). Uncertainty and variability are incorporated by the use of 5000 iterations of the simulation.

The BRT used the bootstrap modeling approach to develop three estimates of global abundance: (1) A “regular-case” estimate based on the methods described above and resulting in a best estimate of 3.9 million adults (95 percent confidence interval = 69,000-61,000,000 adults); (2) a “worst-case” estimate which decreased the estimated amount of available habitat and resulted in an abundance estimate of 2.2 million adults (95 percent confidence interval = 28,000-36,000,000 adults); and (3) a “matched-case” estimate where density estimates for the 49 strata where surveys had occurred were based on those survey data, and estimates for the other 13 strata were based on the randomization process used in the “regular-case” estimate. This third method resulted in an estimated abundance of 4.6 million adults (95 percent confidence interval = 17,000-67,000,000 adults). The BRT concluded, and we agree, that the regular-case estimate provides the most reliable estimate of current global abundance of bumphead parrotfish. However, all models involved large confidence intervals, and high uncertainty is associated with all three estimates. Accordingly, all population estimates are to be interpreted with caution.

Global Abundance Trends

Anecdotal accounts abound of past abundance and recent declines of bumphead parrotfish in many parts of its range (see literature cited in Kobayashiet al.,2011 and NMFS, 2012). Data on appropriate spatial and temporal scales for both historical and contemporary abundances are needed to quantify historic global abundance trends. As described above, the BRT provided contemporary global abundance estimates. However, they found available historical data on such small spatial (e.g., Palau fisheries data, 1976-1990) and temporal (e.g., underwater visual data, 1997-present) scales that historical global population abundance cannot be quantitatively estimated with any reasonable confidence. In the absence of historical quantitative data, the BRT developed two estimates of historical global abundance of adult bumphead parrotfish based on the available contemporary survey data and assumptions regarding likely historic levels of density and that the amount of available habitat was the same as currently. One estimate, called the “virgin-case”, is based on the assumption that historical density is reflected by the density of bumphead parrotfish in the transects surveys that had bumphead parrotfish present (7 percent of the 6,561 transects), while the other estimate, called “historic-density”, assumes that historical density was 3 fish per 1000 m2which is derived from current densities in areas where bumphead parrotfish are considered abundant. The virgin-case estimate of historical abundance was 131.2 million adults (95 percent confidence interval = 66.5-434 million adults), while the historic-density estimate was 51 million (the BRT did not calculate estimates of precision for this estimate).

The BRT states that “the estimates of virgin abundance and related inferences about degree of population reduction are highly speculative and subject to a great deal of uncertainty” (Kobayashiet al., 2011, p. 50). Uncertainty results from possible bias in assumed historical densities, lack of historical density data to validate the methodology on any spatial scale, the amount of habitat available historically may have been over- or under-estimated, historical ecological changes (e.g., reduction in bumphead parrotfish predators) reduce reliability, and density-dependant mechanisms may have affected bumphead parrotfish populations differently in historical times than in contemporary times (Kobayashiet al., 2011; NMFS, 2011). However, the BRT's modeling results are the best available information on historical and current bumphead parrotfish population abundances. In the “Status of Species” conclusion, the BRT states that the global bumphead parrotfish population shows “evidence of a large overall decline and continuing trend of decline despite lack of strong spatial coherence” (Kobayashiet al., 2011, p. 54). Based on the BRT's population modeling results and the uncertainty associated with them, we conclude that adult bumphead parrotfish have undergone a decline in historical population abundance but we are unable to quantify, with any degree of accuracy, the magnitude of that decline.

Future Abundance

In order to quantitatively predict likely future global abundance trends for adult bumphead parrotfish, spatially-explicit data on current and projected levels of the various threats to bumphead parrotfish for each strata would need to be incorporated into a population model because these threats are variable throughout the species range (e.g., some strata are unfished, some strata are heavily fished, some strata may be trending independently of human impact). These data are not currently available so we cannot reliably quantify how trends in current and future human activities and other threats will impact the population into the future. The BRT was not able to estimate future population trends by strata, and accordingly, did not attempt a future projection. As such, we conclude that future global population trends for adult bumphead parrotfish are unquantifiable at this time. However, based on the information provided in the BRT Report (Kobayashiet al.,2011), we conclude that, qualitatively, the available evidence suggests a continuing trend of decline in the global abundance of bumphead parrotfish is likely to continue into the future.

Age and Growth

The bumphead parrotfish appears to have a reasonably well-characterized growth curve and approaches its maximum size at approximately 10-20 years of age with a longevity estimated at approximately 40 years. Most individuals seen in adult habitat are likely older than approximately 5 years (Kobayashiet al.,2011). These estimates have been developed for bumphead parrotfish based on several studies from northeast Australia (Choat and Robertson, 2002), the western Solomon Islands (Hamilton, 2004), New Caledonia (Couture and Chauvet, 1994), and the Indo-Pacific region (Brothers and Thresher, 1985). Choat and Robertson (2002) estimated maximum age for bumphead parrotfish to be 40 years of age assuming that checks on otoliths are deposited annually, although others have estimated maximum age to range from the upper 20s to mid 30s (Hamilton, 2004). All of these estimates may be overly conservative as the largest and potentially oldest individuals observed may not have been included in the analysis (Choat and Robertson, 2002; Hamilton, 2004). In New Caledonia, Couture and Chauvet (1994) determined that bumphead parrotfish have a slow growth rate and in their sampling, the oldest individual was estimated at 16 years. With the exception of the study from New Caledonia, which used scale annuli increments, all ages were determined using otolith sections; some concern has been expressed that these two age determination methods are not equally valid. Based on limited sample size, lack of validation and/or disagreement between scale and otolith techniques, the potential exists to misestimate longevity, growth, and natural mortality for the species (Choatet al.,2006).

Data collected in the western Solomon Islands suggest differential growth between sexes for bumphead parrotfish. Studies indicate that males attain a larger asymptotic size than females and growth is slow but continuous throughout life. In contrast, females exhibit more determinate growth characteristics with asymptotic size established at around age 15 years (Hamilton, 2004).

Age and growth characteristics of juvenile bumphead parrotfish are less well known than those of adults. Pelagic larval duration was estimated at 31 days using pre-transitional otolith increments from just one specimen (Brothers and Thresher, 1985).

The average size of individual bumphead parrotfish observed from SPC surveys was 59.7 cm TL (SD = 20.8), with the largest individual being 110 cm and the smallest being 14 cm. Notable size differences were observed at different locations. These size differences could reflect variable habitat-related growth conditions, recruitment problems, or some level of population structure, but more likely reflect differences in the intensity of harvest and the degree to which size structure of populations has been truncated (Kobayashiet al.,2011).

Feeding

Parrotfishes as a family are primarily considered herbivores. A majority ofparrotfishes inhabiting areas around rocky substrates or coral reefs use their fused beak-like jaws to feed on the benthic community. Based on differences in morphology, parrotfishes are separated into two distinct functional groups: scrapers and excavators (Bellwood and Choat, 1990; Streelmanet al.,2002). Scrapers feed by taking numerous bites, removing material from the surface of the substratum, while excavators take fewer bites using their powerful jaws to remove large portions of both the substrate and the attached material with each bite. As a result of even moderate levels of foraging, both scrapers and excavators can have profound impacts on the benthic community. Thus, it is widely recognized that parrotfishes play important functional roles as herbivores and bioeroders in reef habitats (Bellwoodet al.,2003; Hoey and Bellwood, 2008).

Bumphead parrotfish are classified as excavators feeding on a variety of benthic organisms including corals, epilithic algae, sponges, and other microinvertebrates (Bellwoodet al.,2003; Calcinaiet al.,2005; Randall, 2005; Hoey and Bellwood, 2008). A foraging bumphead parrotfish often leaves distinct deep scars where benthic organisms and substrate have been removed. As such, their contribution as a major bioeroder is significant. A single individual is estimated to ingest more than 5 tons (27.9 kg per m2) of reef carbonate each year (Bellwoodet al.,2003); hence, even small numbers of bumphead parrotfish can have a large impact on the coral reef ecosystem.

Bumphead parrotfish show little evidence of feeding selectivity; however, a significant portion (up to 50 percent) of their diet consists of live coral (Bellwood and Choat, 1990; Bellwoodet al.,2003; Hoey and Bellwood, 2008). On the Great Barrier Reef, bumphead parrotfish are considered major coral predators. One study documented removal of up to 13.5 kg per m2of live coral per year, but also that slightly more foraging activity was directed towards algae than living coral (Bellwoodet al.,2003). Thus, adult bumphead parrotfish are not obligate corallivores but rather generalist benthic feeders. Juvenile bumphead parrotfish diet is not well documented but likely also includes a broad spectrum of softer benthic organisms. Live coral may be relatively unimportant due to the lack of high densities of corals in some juvenile habitats. Generally, bumphead parrotfish appear to be opportunistic foragers and would likely cope with ecosystem shifts in the coral reef community, based upon their behavior and ecology. For example, shifts in benthic species composition (changes in the breakdown of hard corals, soft corals, coralline algae, fleshy algae, sponges, bryozoans, tunicates, etc.) would likely not adversely affect bumphead parrotfish given their nonselective diet (Kobayashiet al.,2011).

Movements and Dispersal

Adult bumphead parrotfish movement patterns are distinct between day and night. Diurnal movement patterns are characterized by groups of individuals foraging among forereef, reef flat, reef pass, and clear outer lagoon habitats at depths of 1-30 m (Donaldson and Dulvy, 2004). The bumphead parrotfish is a gregarious species that can be observed foraging during the day in schools of 20 to more than 100 individuals (Gladstone, 1986; Bellwoodet al.,2003). Groups of foraging parrotfish are highly mobile and often travel distances of several kilometers throughout the day. For example, a study of adult bumphead parrotfish movements and home ranges in the Solomon Islands demonstrated that adults range up to 6 km (3.7 mi) daily from nocturnal resting sites (Hamilton, 2004). At dusk, schools of parrotfish move to nocturnal resting sites found among sheltered forereef and lagoon habitats. Bumphead parrotfish remain motionless while resting, and use caves, passages, and other protected habitat features as refuges during the night. Although bumphead parrotfish travel considerable distances while foraging, they show resting site fidelity and consistently return to specific resting sites (Aswani and Hamilton, 2004).

Dispersal of bumphead parrotfish occurs primarily by passive dispersal of pelagic fertilized eggs and larvae. Many details of the early life history of the species are unknown. In other parrotfishes, eggs are pelagic, small, and spindle shaped (1.5-3 mm long and 0.5-1 mm wide; Leis and Rennis, 1983). Time to hatching is unknown, but is likely between 20 hours and 3 days, as for other reef fishes observed spawning on the shelf-edge (Colin and Clavijo, 1988). Bumphead parrotfish pelagic ecology is unknown, but successful settlement appears to be limited to shallow lagoon habitats characterized by low-energy wave action and plant life (e.g., mangroves, seagrass, or plumose algae) (Kobayashiet al.,2011). High relief coral heads (e.g.,Turbinaria) in sheltered areas also seem to be suitable juvenile habitat (Kobayashiet al.,2011). Mechanisms by which settling bumphead parrotfish larvae find these locations are unknown, although recent research on other species of coral reef fish larvae suggests that a variety of potential cues could be used for active orientation (Leis, 2007).

Connectivity in bumphead parrotfish was examined by the BRT using a computer simulation of larval transport (Kobayashiet al.,2011). Surface currents at a resolution of 1 degree of latitude and longitude were used with a simulated pelagic larval duration of 31 days (Brothers and Thresher, 1985) with a settlement radius of 25 km. This settlement radius estimate was used in previous simulation work (Kobayashi, 2006; Rivera et al., 2011). If propagule survivorship is the main value being estimated, settlement distance is important as well as swimming orientation and other behaviors at the settlement stage. However, for understanding geographic linkages (as in this application), settlement distance is not a key driver of results. As discussed above, much of the recent literature on the role of pelagic larval duration in determining realized dispersal distances has resulted in mixed conclusions. There is support that pelagic larval duration can be a strong predictor of dispersal distances (Shankset al.,2003) yet a poor predictor of genetic similarity (Bayet al.,2006; Bowenet al.,2006; Luizet al.,2011; Weersing and Toonen, 2009). As discussed previously, studies have shown that multiple factors add to the complexity of understanding larval dispersal but they all provide evidence of some level of exchange between sub-populations that are far apart, relative to the range of the species in question. Tremlet al.(2012) in particular, found that broad-scale connectivity is strongly influenced by reproductive output and the length of pelagic larval duration. We are aware of no morphological, life history, or other variation that would suggest population structuring. In the absence of information on complicating factors for bumphead parrotfish, the BRT's simulation of pelagic larval dispersal is the best available information with regard to population connectivity for this species.

Single-generation and multi-generation connectivity probabilities were tested. A number of sites appear to have significant potential as stepping stones with a broad range of input and output strata interconnected in a multi-generational context. Most sites with significant seeding potential are located in close proximity to other sites (e.g., east Africa, central Indo-Pacific). The BRT concluded that bumphead parrotfish likely have an interconnected population structure due to oceanographic transport of pelagic eggsand larvae, with this effect being most pronounced near the center of the species range, but with some degree of isolation in both the eastern and western edges of the species range (Kobayashiet al.,2011).

Reproductive Biology

Unlike most parrotfishes which are protogynous (sequential) hermaphrodites, bumphead parrotfish appear to be gonochoristic (unisexual). Females reach sexual maturity over a broad size range. While they begin to reach sexual maturity at about 500 mm TL, 100 percent of females attain maturity by about 700 mm TL and age 11 yrs. The size at which 50 percent of females have reached maturity is estimated at 550-650 mm TL at age 7-9 yrs (Hamilton, 2004; Hamiltonet al.,2007). Males also reach maturity over a wide size range similar to females, but males begin maturing at smaller sizes and younger ages than females. For example, the smallest mature male observed in age and growth studies was 470 mm TL and age 5 yrs., while the smallest mature female was 490 mm TL and age 6 yrs (Hamilton, 2004; Hamiltonet al.,2007).

Spawning may occur in most months of the year. Hamiltonet al.(2007) found ripe males and females every month of an August through July sampling period in the Solomon Islands. However, females with hydrated ova, indicative of imminent spawning, were only found from February to July. Spawning may have a lunar periodicity, with most spawning occurring in the early morning around the full moon in reef passage habitats (Gladstone, 1986). Hamiltonet al.(2007) found hydrated ova (Colinet al.,2003) in females captured from reef passages and along the outer reef. Bumphead parrotfish are serial spawners with undocumented but presumably very large batch fecundity, considering the large body and gonad size coupled with small egg size (Kobayashiet al.,2011).

Observations of spawning have involved a single male and female. In other parrotfishes, Thresher (1984) describes the establishment of temporary spawning territories by males, with females being courted by males as they passed through spawning territories, and an assemblage of individuals acting as a spawning school. Although Gladstone (1986) described a simple mobile group of bumphead parrotfish individuals from which pair spawning took place, others have described what appeared to be a dominant male spawning with females and smaller sneaker males attempting to participate in spawning. The putative dominant male displayed bright green coloration during spawning. The evidence that males grow to larger sizes than females (Hamilton, 2004) supports the existence of a nonrandom mating system where a reproductive advantage is conferred to larger dominant males (Ghiselin, 1969; Kobayashiet al.,2011). Warner and Hoffman (1980) showed mating system and sexual composition in two parrotfish relatives is density dependent. Munoz et al. (2012) have documented male-male head-butting encounters that may serve to establish mating territories or dominance and confirm the presumed function of the larger bumps in males.

Settlement and Recruitment

As with many other aspects of bumphead parrotfish biology, little is known about the processes following settlement of larvae in the benthic environment. Juveniles appear to gradually work their way towards adult habitats on the forereef areas, but timing and duration of this movement are unknown. The smallest size at which bumpheads enter the adult population on forereef areas is approximately 40 cm TL. These large juveniles are not often seen in surveys and may remain cryptic until adopting the wide-ranging swimming and foraging behavior of adults. Certain areas, for example the Great Barrier Reef, do not appear to receive significant recruitment (Bellwood and Choat, 2011). Adults on the Great Barrier Reef are thought to originate from elsewhere (north), which may explain the latitudinal trend of decreasing abundance toward southern portions of the area (Kobayashiet al.,2011).

Ecosystem Considerations

Despite typically low abundance, bumphead parrotfish can have a disproportionately large impact on their ecosystem as a result of their size and trophic role. Their role as non-selective, excavator feeders is likely important for maintaining species diversity of corals and other benthic organisms. For example, certain species of coral (i.e., plate-forming) and algae can quickly monopolize substrate if unchecked. Non-selective feeding prevents any one organism from dominating the benthic ecosystem. Hence the species may be a classic example of a keystone species. The role of bumphead parrotfish in bioerosion and sand generation is also of notable importance; this effect is clearly seen by the persistence of dead coral skeletons in areas where excavating herbivores have been reduced (Bellwoodet al.,2004).

Carrying Capacity

There is no evidence regarding limiting factors for bumphead parrotfish population growth, particularly under pristine conditions. Some likely limiting factors for past, present, and/or future bumphead parrotfish population growth include settlement and recruitment limitation factors (Doherty, 1983; Sale, 2004), juvenile habitat, adult sleeping habitat, requisite abundance of conspecifics for successful group foraging or reproduction, and human harvest. Most of these factors are likely to become more limiting over time (Kobayashiet al.,2011).

Threats Evaluation

Threats Evaluation is the second step in the process of making an ESA listing determination for bumphead parrotfish as described above in “Listing Determinations Under the ESA”. This step follows guidance in the ESA that requires us to determine whether any species is endangered or threatened due to any of the following five factors: (A) The present or threatened destruction, modification, or curtailment of its habitat or range; (B) overutilization for commercial, recreational, scientific, or educational purposes; (C) disease or predation; (D) the inadequacy of existing regulatory mechanisms; or (E) other natural or manmade factors affecting its continued existence (sections 4(a)(1)(A) through (E)).

The BRT Report assessed 14 specific threats according to factors A, B, C, and E as follows: for factor (A), the BRT identified three threats: adult habitat loss or degradation, juvenile habitat loss or degradation, and pollution; for factor (B), the BRT assessed harvest or harvest-related adult mortality, and capture or capture-related juvenile mortality; for factor (C), the BRT identified five threats: competition, disease, parasites, predation, and starvation; and for factor (E), the BRT discussed four threats: global warming, ocean acidification, low population effect, and recruitment limitation or variability. The BRT determined the severity, scope, and certainty for these threats at three points in time—historically (40-100 years ago or as otherwise noted in the table), currently, and in the future (40-100 years from now; Kobayashiet al.,2011). Each threat/time period combination was ranked as high/medium/low severity with plus or minus symbols appended to indicate values in the upper or lower ends of these ranges, respectively.

Of the 14 threats, the BRT Report determined that five had insufficient data to determine severity, scope, orcertainty at any of the three points in time (competition, disease, parasites, starvation, and low population effect). We agree that sufficient information is not available to determine the severity of these threats. The remaining nine threats are described below by factor.

Factor D threats (related to inadequacy of existing regulatory mechanisms), were assessed in the Management Report (NMFS, 2012). Two public comments received in response to the 90-Day Finding contained information relevant to existing regulatory mechanisms that was considered in the Management Report. One comment provided information on cultural significance, harvest methods, and the importance of Marine Protected Areas (MPAs) and remote areas with limited access that may provide refuge for the species within a narrow portion of its range. The second comment provided information pertaining to existing regulatory mechanisms in some parts of the species range and the effectiveness of MPAs in providing some benefit to the species. In the Management Report, we summarized existing regulatory mechanisms in each of the 46 areas where bumphead parrotfish occur, including fisheries regulations and MPAs. Additionally, we developed a comprehensive catalog of protected areas containing coral reef and mangrove habitat within the range of the species (NMFS 2012, Appendix A-1 and A-2) and evaluated how the MPA network addresses threats to the species (NMFS 2012, Sections 2.1.2.1-46 and 4). The Management Report authors did not determine the severity, scope, and certainty for Factor D threats at three points in time—historically, currently, and in the future—as did the BRT. They compiled information on the presence of international, national, and local scale regulations and then discussed general themes and patterns that emerged in order to assess whether the inadequacy of existing regulatory mechanisms is a factor that changes the extinction risk analysis results provided by the BRT.

A. The Present or Threatened Destruction, Modification, or Curtailment of Its Habitat or Range

Juvenile habitat loss or degradation was rated by the BRT as one of the two (along with adult harvest) most severe threats to bumphead parrotfish, rating its severity as “medium” historically and as “high” both currently and over a 40-100 year future time horizon. As described by the BRT, shallow mangrove, seagrass, and coral reef lagoon habitats are susceptible to pollution, modification, and increased harvest pressure, among other anthropogenic pressures. The juvenile habitat specificity of bumphead parrotfish highlights this phase of the life history as highly vulnerable (Kobayashiet al.,2011).

In contrast to juvenile habitat, the BRT concluded that adult habitat loss and/or degradation is not a high priority concern, rating its severity as “medium” both currently and over a 40-100 year future time horizon (with a historical rating of low). Drastic morphological changes to coral reefs might impact bumphead parrotfish if high-energy zones were reduced or wave energy was diffused or if nocturnal resting/sleeping locations were no longer available (Kobayashiet al.,2011). Both are quite possible under some scenarios for climate change where coral reef structures can't keep up with sea level rise and also die or experience decreased growth from increased temperature and then degrade and fail to be replaced by similar three-dimensional structure that creates both the high energy zones (reef crests) and sleeping structures. Adult bumphead parrotfish appear to be opportunistic foragers and would likely cope with ecosystem shifts in the coral reef community, based on their behavior and ecology. For example, shifts in benthic species composition (e.g., changes in the breakdown of hard corals, and the relative abundance of soft corals, coralline algae, fleshy algae, sponges, bryozoans, tunicates, etc.) would probably not adversely affect bumphead parrotfish given their nonselective diet. Some components of the coral reef ecosystem are likely more affected by the presence or absence of bumphead parrotfish than bumpheads are dependent on those ecosystem components.

The BRT concluded that pollution is not a high priority concern, rating its severity as “low” both historically and currently, and “medium -” over a 40-100 year future time horizon. Pollution events (e.g., oil spills) can be catastrophic to coral reef ecosystems. However, such events remain episodic, rare, and are usually localized in the context of a widely-distributed, mobile species. Habitat modification as a result of pollution is most likely to be an issue with juvenile habitat since it is more exposed to anthropogenic impacts because of proximity, shallowness, and tendency to be more contained (e.g., lagoons, as opposed to open coastal waters). The BRT Report expressed high concern about the effects of pollution on the quantity and quality of juvenile habitat, but expressed less concern about adult habitat since adult habitat is larger, spans a wider geographic range, and is typically a more open environment (Kobayashiet al.,2011).

B. Overutilization for Commercial, Recreational, Scientific, or Educational Purposes

The BRT rated harvest of adults as one of the two most severe threats (along with juvenile habitat loss) to bumphead parrotfish, with severity rated as “high” historically, currently, and over a 40-100 year future time horizon. In contrast to adult harvest, the BRT concluded that juvenile harvest is less of a concern, rating its severity as “medium”, both currently and over a 40-100 year future time horizon (rated as “nil” historically). While the BRT rated the threat of harvest differently by life stage, we first discuss general harvesting issues applicable to both life stages, then consider specific justifications for the different rankings.

Bumphead parrotfish are highly prized throughout their range. In addition to their commercial value, bumphead parrotfish are culturally significant for many coastal communities and used in feasts for specialized ceremonial rites (Severance, pers. comm.; Riesenberg, 1968). As such, fisheries for this species have been in place since human inhabitation of these coastal regions (Johannes, 1978; 1981). Following are descriptions of life history characteristics of the species that affect vulnerability to harvest, harvest gears and methods, and summaries of harvest data from the few locales where available.

Life History Characteristics Relevant to Harvest

Immature bumphead parrotfish (40-50 cm TL, sub-adults) recruit to adult habitat (coral reef forereefs); thus, the following descriptions of life history characteristics and methods/gears relate to sub-adults and adults. Several life history characteristics increase the vulnerability of sub-adult and adult bumphead parrotfish to harvest such as nocturnal resting behavior, diurnal feeding behavior, large size and conspicuous coloration. At night, bumphead parrotfish frequently remain motionless while resting in refuge sites and they consistently return to specific resting sites. Unlike other parrotfish species, bumphead parrotfish do not excrete a mucus cocoon to rest within. Thus, resting in shallow water in large groups and returning to the same unprotected resting sites all increase vulnerability of adult bumphead parrotfish to harvest at night (NMFS, 2012). Adult bumphead parrotfish schools effectively announce theirpresence by loud crunching noises associated with feeding activity, which can be heard at least several hundred meters away underwater. In addition, bumphead parrotfish may form spawning aggregations during the daytime. Thus, foraging in shallow water in schools, conspicuous foraging noise, and spawning behavior also all increase the vulnerability of adult bumphead parrotfish to harvest (NMFS, 2012).

It is likely that juvenile bumphead parrotfish are more vulnerable to harvest in populated regions based on their aggregating behavior and tendency to inhabit shallow lagoon environments. They suffer the same vulnerability from night time harvest as adults and sub-adults as they also use traditional nocturnal resting refuge sites.

Harvest Methods and Gears

Historically, fishing for bumpheads typically took place at night while fish were motionless in their nocturnal resting sites. Fishermen armed with hand spears would paddle wooden canoes or simply walk across shallow reef habitats using a torch assembled from dried coconut fronds in search of resting fish (Dulvy and Polunin, 2004). With the advent of dive lights, SCUBA, freezers, and more sophisticated spears and spear guns, the ability to exploit bumphead parrotfish has increased dramatically over the last several decades (Hamilton, 2003; Aswani and Hamilton, 2004).

Current Indo-Pacific coral reef fisheries are nearly as diverse as the species they target, and include many subsistence, commercial, and sport/recreational fisheries employing a vast array of traditional, modern, and hybrid methods and gears (Newtonet al.,2007; Wilkinson, 2008; Armadaet al.,2009; Cinneret al.,2009; NMFS, 2012). This tremendous increase in fisheries using both selective and non-selective gears is a significant factor in the high severity of threat to adult bumphead parrotfish. In addition, even though many destructive gears and methods are illegal in most countries with coral reef habitat within their jurisdiction, they are still used within the range of bumphead parrotfish. Examples include blast fishing using explosives to kill or stun fish, and the use of poisons like bleach or cyanide. Blast fishing is very damaging to coral reef habitat and can result in significant time required for recovery (Fox and Caldwell, 2006).

Summary of Harvest Data

Data pertaining to harvest are sparse, incomplete, or lacking for a majority of regions across the range of bumphead parrotfish, though efforts have been made over the past 30 years to obtain fisheries harvest information at a few sites in the central and western Pacific. However, most of the available harvest data combine all parrotfish species into one category, making it difficult to identify bumphead parrotfish harvest amounts. Harvest data specific to bumphead parrotfish exist for Palau (Kitalong and Dalzell, 1994), Guam (NOAA, The Western Pacific Fisheries Information Network), Solomon Islands (Aswani and Hamilton, 2004; Hamilton, 2003), Fiji (Dulvy and Polunin, 2004), and Papua New Guinea (Wright and Richards, 1985).

In Palau, efforts to assess commercial landings of reef fishes were made from 1976 to 1990 (Kitalong and Dalzell, 1994). All harvest data were collected at the main commercial landing site and it is estimated that these data accounted for 50-70 percent of the total commercial catch. Overall, bumphead parrotfish represented 10 percent of reef fisheries landings in Palau, making it the second most important commercial reef fish. It was estimated that an average of 13 metric tons of bumphead parrotfish were sold annually during the study. The highest landings were recorded in the mid-1980s, with a maximum of 34 metric tons sold in 1984. Declines in total catch were observed following the mid-1980s, creating